elasticSearch
2022-12-30 09:28:57

ElasticSearch

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容,elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域,而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据

image-20221230172857418

正向索引

正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

image-20221230173440160

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描

倒排索引

倒排索引是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

image-20221230173641790

倒排索引是对正向索引的一种特殊处理

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引
  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

==文档和字段==

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中,而Json文档中往往包含很多的字段(Field),类似于数据库中的列

image-20221230174241480

==索引和映射==

  • 索引(Index)就是相同类型的文档的集合,可以把索引当做是数据库中的表
  • 映射(mapping)是索引中文档的字段约束信息,类似表的结构约束

image-20221230174739730

==mysql与elasticsearch==

MySQL Elasticsearch 说明
Table Index 索引(index),就是文档的集合,类似数据库的表(table)
Row Document 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
Column Field 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
Schema Mapping Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQL DSL DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD
  • Mysql 擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch 擅长海量数据的搜索、分析、计算

image-20221230175204724

  • 文档 一条数据就是一个文档,es中是Json格式
  • 字段 Json文档中的字段
  • 索引 同类型文档的集合
  • 映射 索引中文档的约束,比如字段名称、类型

elasticsearch,kibana安装

==:star:elasticsearch 8.x版本首次运行会生成kibana需要的验证码==

1
2
docker pull elasticsearch:7.17.7
docker pull kibana:7.17.7

创建一个网络让es和kibana容器互联

1
docker network create es-net

es数据卷挂载需要设置权限

1
sudo chown 1000:1000 <directory you wish to mount> 

启动elasticsearch

1
2
3
4
5
6
7
8
9
10
docker run -d --name es \
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
-e "discovery.type=single-node" \
-v $PWD/es-data:/usr/share/elasticsearch/data \
-v $PWD/es-plugins:/usr/share/elasticsearch/plugins \
--privileged \
--network es-net \
-p 9200:9200 \
-p 9300:9300 \
elasticsearch:7.17.7
  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

启动kibana

1
2
3
4
5
docker run -d --name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601 \
kibana:7.17.7
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

分词器

es在创建倒排索引时需要对文档分词;在搜索时,需要对用户输入内容分词。但默认的分词规则对中文处理并不友好,处理中文分词一般会使用IK分词器,IK分词器包含两种模式

  • ik_smart 智能切分,粗粒度
  • ik_max_word 最细切分,细粒度

安装分词器

在线安装

1
2
3
4
5
6
7
8
9
10
# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.17.7/elasticsearch-analysis-ik-7.17.7.zip

#退出
exit
#重启容器
docker restart elasticsearch

离线安装

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录==ik分词的版本和es的版本要一致==

1
docker volume inspect es-plugins

将下载好的压缩包解压后上传到数据卷中

demo

1
2
3
4
5
POST /_analyze
{
"analyzer": "ik_smart",
"text": "我在湖南化工职业技术学院学习"
}

_analyze分词

image-20221230232245367

ik_smart分词

image-20221230232152626

ik_max_word分词

image-20221230232340344

扩展词库

修改分词器config目录下的IKAnalyzer.xml文件

1
2
3
4
5
6
7
8
9
10
11
12
13
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict">ext.dic</entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry>
<!--用户可以在这里配置远程扩展字典 -->
<!-- <entry key="remote_ext_dict">words_location</entry> -->
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

ext.dic的文件中添加扩展的词语

stopword.dic文件中禁止的词语

索引库操作

mapping属性是对索引库中文档的约束,常见的mapping属性

  • type 字段常用数据类型
    • 字符串 text(可分词), keyword(精确度,不可分词)
    • 数值 long integer short byte double float
    • 布尔 boolean
    • 日期 date
    • 对象 object
  • index 是否创建索引,默认为true
  • analyzer 使用哪种分词器
  • properties 该字段的子字段

es中通过Restful 请求操作索引库,文档,请求内容用DSL语句来表达

创建索引库

image-20221231184747749

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
PUT /user
{
"mappings": {
"properties": {
"info": {
"type": "text",
"analyzer": "ik_smart"
},
"email": {
"type": "keyword",
"index": false
},
"name": {
"type": "object",
"properties": {
"firstName": {
"type": "keyword"
},
"lastName": {
"type": "keyword"
}
}
}
}
}
}

查看索引库

1
GET /索引库名

删除索引库

1
DELETE /索引库名

==索引库一旦创建,无法修改mapping,但是可以添加新的字段==

1
2
3
4
5
6
7
8
9
PUT /user/_mapping
{
"properties": {
"age": {
"type": "integer",
"index": false
}
}
}

文档操作

新增文档POST /索引库名/_doc/文档id

1
2
3
4
5
6
7
8
9
10
POST /user/_doc/1
{
"info": "湖南化工大三学生",
"age": 18,
"email": "zs@136.com",
"name": {
"firstName": "张",
"lastName": "三"
}
}

查看文档get /索引库名/_doc/文档id

1
GET /user/_doc/1

修改文档

  • 全量修改 PUT(POST) /索引库名/_doc/文档id

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    PUT /user/_doc/1
    {
    "info": "大三学生",
    "age": 18,
    "email": "zs@136.com",
    "name": {
    "firstName": "李",
    "lastName": "四"
    }
    }
  • 增量修改 POST /索引库名/_update/文档id

    1
    2
    3
    4
    5
    6
    POST /user/_update/1
    {
    "doc": {
    "age": 20
    }
    }
  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档
    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
    • 增量修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}

RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client

创建索引库

image-20221231223610656

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
PUT /hotel {
"mappings": {
"properties": {
"id": {
"type": "keyword"
},
"name": {
"type": "text",
"analyzer": "ik_smart",
"copy_to": "{all}"
},
"address": {
"type": "keyword",
"index": false
},
"price": {
"type": "integer"
},
"score": {
"type": "integer"
},
"brand": {
"type": "keyword",
"copy_to": "{all}"
},
"city": {
"type": "keyword",
"copy_to": "{all}"
},
"star_name": {
"type": "keyword",
"copy_to": "{all}"
},
"business": {
"type": "keyword",
"copy_to": "{all}"
},
"location": {
"type": "geo_point"
},
"pic": {
"type": "keyword",
"index": false
},
"all": {
"type": "text",
"analyzer": "ik_smart"
}
}
}
}
  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

初始化RestClient

导入依赖

1
2
3
4
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

初始化RestHighLevelClient

1
2
3
RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
HttpHost.create("http://12.0.0.1:9200")
));

索引库操作

创建索引库

1
2
3
4
5
6
7
8
9
@Test
void createHotelIndex() throws IOException {
//创建request对象
CreateIndexRequest request = new CreateIndexRequest( INDEX_NAME );
//请求参数
request.source( MAPPING_TEMPLATE, XContentType.JSON );
//发送请求创建索引库
client.indices().create( request, RequestOptions.DEFAULT );
}

删除索引库

1
2
3
4
5
@Test
void deleteIndex() throws IOException {
DeleteIndexRequest request = new DeleteIndexRequest( INDEX_NAME );
client.indices().delete( request,RequestOptions.DEFAULT );
}

索引是否存在

1
2
3
4
5
6
7
@Test
void isExistIndex() throws IOException {
GetIndexRequest request = new GetIndexRequest( INDEX_NAME );
boolean exists = client.indices().exists( request, RequestOptions.DEFAULT );
log.info( exists ? "索引库存在" : "索引库不存在" );
}
}

文档操作

插入文档

image-20230101170541406

1
2
3
4
5
6
7
8
9
@Test
void insertDoc() throws IOException {
IndexRequest request = new IndexRequest( INDEX_NAME ).id( "36934" );
request.source(
"price","446",
"starName","三钻",XContentType.JSON
);
client.index( request,RequestOptions.DEFAULT );
}

查询文档

image-20230101170637708

1
2
3
4
5
6
@Test
void queryDoc() throws IOException {
GetRequest request = new GetRequest( INDEX_NAME,"36934" );
GetResponse documentFields = client.get( request, RequestOptions.DEFAULT );
System.out.println( documentFields.getSourceAsString() );
}

删除文档

1
2
3
4
5
6
@Test
void deleteDoc() throws IOException {
DeleteRequest request = new DeleteRequest( INDEX_NAME,"36934" );
DeleteResponse delete = client.delete( request, RequestOptions.DEFAULT );
System.out.println( delete.status() );
}

修改文档

image-20230101170744098

1
2
3
4
5
6
7
8
9
@Test
void updateDoc() throws IOException {
UpdateRequest request = new UpdateRequest( "hotel", "36934" );
request.doc(
"price","446",
"starName","三钻"
);
client.update( request,RequestOptions.DEFAULT );
}

批量操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Test
void bulkInsert(){
//获取数据
List<Hotel> hotels = hotelService.list();
BulkRequest request = new BulkRequest();
hotels.forEach( hotel -> {
HotelDoc hotelDoc = new HotelDoc( hotel );
//创建文档request
IndexRequest index = new IndexRequest( "hotel" ).id( hotelDoc.getId().toString() );
index.source( JSON.toJSONString( hotelDoc ),XContentType.JSON );
//添加数据
request.add( index );
//批量插入
try {
client.bulk( request,RequestOptions.DEFAULT );
} catch ( IOException e ) {
throw new RuntimeException( e );
}
} );
}

查询文档

分类查询

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询

  • 查询所有:查询出所有数据,一般测试用 match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配

    • match
    • multi_match
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件

    • bool
    • function_score

image-20230101223511950

match_all

1
2
3
4
5
6
7
8
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
}
  }
}

全文检索查询

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

match单字段查询

image-20230101223838246

1
2
3
4
5
6
7
8
GET /hotel/_search
{
"query": {
"match": {
"all": "上海"
}
}
}

multi_match多字段查询

image-20230101224014611

1
2
3
4
5
6
7
8
9
GET /hotel/_search
{
"query": {
"multi_match": {
"query": "上海外滩",
"fields": ["name","brand"]
}
}
}

搜索字段越多,对查询性能影响越大,建议采用copy_to,然后单字段查询的方式

精确查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词

  • term:根据词条精确值查询
  • range:根据值的范围查询

term查询

精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据

image-20230101224424984

1
2
3
4
5
6
7
8
9
10
GET /hotel/_search
{
"query": {
"term": {
"id": {
"value": "60487"
}
}
}
}

range查询

image-20230101224621289

1
2
3
4
5
6
7
8
9
10
11
GET /hotel/_search
{
"query": {
"range": {
"price": {
"gte": 100,
"lte": 200
}
}
}
}

地理坐标查询

geo_bounding_box查询

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点

image-20230101225010426

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

geo_distance查询

查询到指定中心点小于某个距离值的所有文档。

image-20230101234902614

1
2
3
4
5
6
7
8
9
10
// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

相关性算分

match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列

image-20230101232058863

  • TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑
  • image-20230101232240100
function score 查询
  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

image-20230101235152221

  • 根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 根据过滤条件,过滤文档
  • 符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分
    • 过滤条件:决定哪些文档的算分被修改
    • 算分函数:决定函数算分的算法
    • 运算模式:决定最终算分结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
GET /hotel/_search
{
"query": {
"function_score": {
"query": {
"match": {
"all": "外滩"
}
},
"functions": [
{
"filter": {
"term": {
"name": "如家"
}
},
"weight": 2
}
],
"boost_mode": "sum"
}
}
}
布尔查询
  • image-20230102000316911

搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
GET /hotel/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"name": "如家"
}
}
],
"must_not": [
{
"range": {
"price": {
"gte": 400
}
}
}
],
"filter": [
{
"geo_distance": {
"distance": "100km",
"location": {
"lat": 31.73,
"lon": 121.1
}
}
}
]
}
}
}
搜索结果处理
  1. 排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等

普通字段排序keyword、数值、日期类型排序的语法基本一致

image-20230102002209247

1
2
3
4
5
6
7
8
9
10
11
12
13
14
GET /hotel/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"price": {
"order": "desc"
},
"starName": "asc"
}
]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

地理坐标排序

image-20230102002308535

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
GET /hotel/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"_geo_distance": {
"location": "31,121",
"unit": "km",
"order": "asc"
}
}
]
}

分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果

  • from:从第几个文档开始
  • size:总共查询几个文档

image-20230102003114605

1
2
3
4
5
6
7
8
GET /hotel/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 20
}

深度分页问题

image-20230102004206410

针对深度分页,ES提供了两种解决方案,官方文档

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用

分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案

高亮

image-20230102004454522

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
GET /hotel/_search
{
"query": {
"match": {
"all": "如家"
}
},
"highlight": {
"fields": {
"name": {
"require_field_match": "false" //字段匹配
}
}
}
}
  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false
image-20230102005334554

RestClient查询文档

match,match_all查询

image-20230102005835404

1
2
3
4
5
6
7
@Test
void matchAll() throws IOException {
SearchRequest request = new SearchRequest( "hotel" );
request.source().query( QueryBuilders.matchQuery( "all","如家" ) );
SearchResponse search = client.search( request, RequestOptions.DEFAULT );
this.jsonAnalysis( search );
}

结果解析

image-20230103235927514

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

逐层解析JSON字符串

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits#getTotalHits().value:获取总条数信息
    • SearchHits#getHits():获取SearchHit数组,也就是文档数组
      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
void jsonParse( SearchResponse response ){
SearchHits searchHits = response.getHits();
//总记录数
long total = searchHits.getTotalHits().value;
System.out.println( "查询到:"+total+"条数据" );
SearchHit[] hitsHits = searchHits.getHits();
for ( SearchHit hit : hitsHits ) {
//获取数据
String json = hit.getSourceAsString();
//反序列化流
HotelDoc hotelDoc = JSON.parseObject( json, HotelDoc.class );

//获取高亮数据
Map<String, HighlightField> highlightFields = hit.getHighlightFields();
if ( !CollectionUtils.isEmpty( highlightFields ) ) {

//根据字段名获取高亮结果
HighlightField field = highlightFields.get( "name" );
if ( field != null ){
String name = field.getFragments()[0].string();
hotelDoc.setName( name );
}

}
System.err.println( hotelDoc );
}

}

精确查询

image-20230104000255970

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
@Test
void termSearch() throws IOException {
SearchRequest request = new SearchRequest( INDEX_NAME );

request.source().query( QueryBuilders.termQuery( "city","上海" ) );
SearchResponse response = client.search( request, RequestOptions.DEFAULT );
this.jsonParse( response );
}

@Test
void rangeSearch() throws IOException {
SearchRequest request = new SearchRequest( INDEX_NAME );
request.source().query(
QueryBuilders.rangeQuery( "price" )
.gte( 1000 ).lte( 2000 )
);
SearchResponse response = client.search( request, RequestOptions.DEFAULT );
this.jsonParse( response );
}

复杂查询

image-20230104004344888

1
2
3
4
5
6
7
8
9
10
@Test
void boolSearch() throws IOException {
SearchRequest request = new SearchRequest( INDEX_NAME );
request.source().query( QueryBuilders.boolQuery()
.must( QueryBuilders.termQuery( "city","上海" ) )
.filter( QueryBuilders.rangeQuery( "price" ).lte( 200 ) )
);
SearchResponse search = client.search( request, RequestOptions.DEFAULT );
this.jsonParse( search );
}

排序和分页

image-20230104001406296

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
@Test
void pageQuery() throws IOException {
int form = 3;
int size = 10;

SearchRequest request = new SearchRequest( "hotel" );
//DSL
request.source().query( QueryBuilders.matchAllQuery() );
//排序
request.source().sort( "price", SortOrder.ASC );
//分页
request.source().from( (form-1)*size ).size( size );
SearchResponse search = client.search( request, RequestOptions.DEFAULT );
this.jsonAnalysis( search );
}

高亮

image-20230104002050529

1
2
3
4
5
6
7
8
9
10
11
12
@Test
void highlight() throws IOException {
SearchRequest request = new SearchRequest( INDEX_NAME );
request.source().query( QueryBuilders.matchQuery( "all","如家" ) )
.highlighter( new HighlightBuilder()
.field( "name" )
//忽略字段匹配
.requireFieldMatch( false )
);
SearchResponse search = client.search( request, RequestOptions.DEFAULT );
System.out.println( search.getHits() );
}

json解析

image-20230104003844914

1
2
3
4
5
6
7
8
9
10
11
12
//获取高亮数据
Map<String, HighlightField> highlightFields = hit.getHighlightFields();
if ( !CollectionUtils.isEmpty( highlightFields ) ) {

//根据字段名获取高亮结果
HighlightField field = highlightFields.get( "name" );
if ( field != null ){
String name = field.getFragments()[0].string();
hotelDoc.setName( name );
}

}

数据聚合

**聚合(aggregations**可以让我们极其方便的实现对数据的统计、分析、运算,聚合常见的有三类

  • 桶(Bucket)聚合:用来对文档做分组
    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • 管道(pipeline)聚合:其它聚合的结果为基础做聚合

参加聚合的字段必须是keyword、日期、数值、布尔类型

Bucket聚合

image-20230104170110406

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAggs": {
"terms": {
"field": "brand",
"size": 10,
"order": {
"_count": "asc" //修改聚合的排序
}
}
}
}
}

限定聚合的范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件,只要添加query条件即可

image-20230104170418453

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
GET /hotel/_search
{
"size": 0,
"query": {
"range": {
"price": {
"gte": 1000
}
}
},
"aggs": {
"brandAggs": {
"terms": {
"field": "brand",
"size": 10
}
}
}
}
  • aggs代表聚合,与query同级,query限定聚合的范围
  • 聚合三要素
    • 名称
    • 类型
    • 字段
  • 聚合可配置的属性
    • size 聚合结果数量
    • order 聚合结果排序方式
    • field 聚合字段

Metric聚合语法

image-20230104170837880

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAggs": {
"terms": {
"field": "brand",
"size": 10,
"order": {
"avgAggs.avg": "asc" //对聚合桶内的结果排序
}
},
"aggs": {
"avgAggs": {
"stats": {
"field": "score"
}
}
}
}
}
}

RestAPI实现聚合

image-20230104171146240

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
@Test
void bucketAggs() throws IOException {
SearchRequest request = new SearchRequest( INDEX_NAME );
//文档数量
request.source().size( 0 )
//限定聚合范围
.query( QueryBuilders
.rangeQuery( "price" )
.gte( 1000 ) )
//聚合
.aggregation( AggregationBuilders
//桶名称
.terms( "brandAggs" )
//字段
.field("brand" )
.size(10)
//排序方式
.order( BucketOrder.count( true ) )
);

SearchResponse response = client.search( request, RequestOptions.DEFAULT );

this.jsonParse( response );
}

结果解析

image-20230104172337620

1
2
3
4
5
void jsonParse( SearchResponse response ){
Terms brandAggs = response.getAggregations().get( "brandAggs" );
List<? extends Terms.Bucket> buckets = brandAggs.getBuckets();
buckets.forEach( bucket -> System.err.println( bucket.getKeyAsString() ) );
}

Metric聚合

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
@Test
void metricAggs() throws IOException {
SearchRequest request = new SearchRequest( INDEX_NAME );
request.source().size( 0 ).aggregation( AggregationBuilders
.terms( "brandAggs" )
.size( 10 )
.field("brand")
);
request.source().aggregation( AggregationBuilders
.stats( "avgAggs" )
.field( "score" )
);
SearchResponse response = client.search( request, RequestOptions.DEFAULT );
this.jsonParse( response );
}

拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词,将下载好的压缩包解压上传到es的插件目录,重启后生效

image-20230105174250047

image-20230105180800988

自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器,elasticsearch中分词器(analyzer)的组成包含三部分

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

image-20230105180634118

声明自定义分词器的语法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
PUT /test
{
"settings": {
"analysis": {
"analyzer": { // 自定义分词器
"my_analyzer": { // 分词器名称
"tokenizer": "ik_max_word",
"filter": "py"
}
},
"filter": { // 自定义tokenizer filter
"py": { // 过滤器名称
"type":"pinyin", // 过滤器类型,这里是pinyin
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false

}
}
}
},
"mappings": {
"properties": {
"name": {
"type": "text",
"analyzer": "my_analyzer",
"search_analyzer": "ik_smart"
}
}
}
}

image-20230105180549484

自动补全

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。
  • 字段的内容一般是用来补全的多个词条形成的数组

image-20230105181751527

查询DSL

1
2
3
4
5
6
7
8
9
10
11
12
13
GET /test2/_search
{
"suggest": {
"YOUR_SUGGESTION": {
"text": "s", //关键字
"completion": {
"field": "name", //补全字段
"skip_duplicates": true, //跳过重复的
"size": 10 //结果条数
}
}
}
}

image-20230105184301762

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@Test
void suggest() throws IOException {
SearchRequest request = new SearchRequest( "hotel" );
request.source().suggest( new SuggestBuilder().addSuggestion(
"suggestions",
SuggestBuilders.completionSuggestion( "suggestion" )
.prefix( "上海" )
//是否跳过重复的
.skipDuplicates( true )
.size( 10 )
) );
SearchResponse search = client.search( request, RequestOptions.DEFAULT );
CompletionSuggestion suggestions = search.getSuggest().getSuggestion( "suggestions" );
suggestions.getOptions().forEach( suggest->{
System.out.println( suggest.getText().string() );
} );
}

image-20230105201611037

1
2
3
4
CompletionSuggestion suggestions = search.getSuggest().getSuggestion( "suggestions" );
suggestions.getOptions().forEach( suggest->{
System.out.println( suggest.getText().string() );
} );

数据同步

image-20230105201715821

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

image-20230105201839698

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

image-20230105201941697

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

集群

单机的elasticsearch做数据存储,必然面临两个问题

image-20230105231000138

集群搭建

编写docker-compose文件,并运行

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
version: '2.2'
services:
es01:
image: docker.elastic.co/elasticsearch/elasticsearch:7.17.7
container_name: es01
environment:
- node.name=es01
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es02,es03
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- data01:/usr/share/elasticsearch/data
ports:
- 9200:9200
networks:
- elastic
es02:
image: docker.elastic.co/elasticsearch/elasticsearch:7.17.7
container_name: es02
environment:
- node.name=es02
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es03
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- data02:/usr/share/elasticsearch/data
networks:
- elastic
es03:
image: docker.elastic.co/elasticsearch/elasticsearch:7.17.7
container_name: es03
environment:
- node.name=es03
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es02
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- data03:/usr/share/elasticsearch/data
networks:
- elastic

volumes:
data01:
driver: local
data02:
driver: local
data03:
driver: local

networks:
elastic:
driver: bridge

image-20230105231607365

es中集群节点的职责划分

节点类型 配置参数 默认值 节点职责
master eligible node.master true 备选主节点:主节点可以管理和记录集群状态、决定分片在哪个节点、处理创建和删除索引库的请求
data node.data true 数据节点:存储数据、搜索、聚合、CRUD
ingest node.ingest true 数据存储之前的预处理
coordinating 上面3个参数都为false则为coordinating节点 路由请求到其它节点 合并其它节点处理的结果,返回给用户

image-20230105232001513

脑裂

在一个集群中,主节点与其它节点失联,此时,node2和node3认为node1宕机,就会重新选主,当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

image-20230105232246905

分布式存储

image-20230105232356162

分布式查询

image-20230105232515949

故障转移

image-20230105232557744